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57 ABSTRACT

Systems and methods are provided for identifying combina-
torial feature interactions, including capturing statistical
dependencies between categorical variables, with the statis-
tical dependencies being stored in a computer readable stor-
age medium. A model is selected based on the statistical
dependencies using a neighborhood estimation strategy, with
the neighborhood estimation strategy including generating
sets of arbitrarily high-order feature interactions using at least
one rule forest and optimizing one or more likelihood func-
tions. A damped mean-field approach is applied to the model
to obtain parameters of a Markov random field (MRF); a
sparse high-order semi-restricted MRF is produced by adding
ahidden layer to the MRF; indirect long-range dependencies
between feature groups are modeled using the sparse high-
order semi-restricted MRF; and a combinatorial dependency
structure between variables is output.

16 Claims, 4 Drawing Sheets
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1
SPARSE HIGHER-ORDER MARKOV
RANDOM FIELD

RELATED APPLICATION INFORMATION

This application claims priority to provisional application
Ser. No. 61/654,255 filed on Jun. 1, 2012, the entirety of
which is herein incorporated by reference.

BACKGROUND

1. Technical Field

The present invention relates to interactions between tran-
scription factor binding, and more particularly, to a sparse
high-order Boltzmann Machine for identifying combinatorial
interactions between transcription factors.

2. Description of the Related Art

Identifying combinatorial relationships between transcrip-
tion factors (TFs) maps the data mining task of discovering
the statistical dependency between categorical variables.
Model selection in high dimensional discrete case has been a
traditionally challenging task. Recently, an approach of gen-
erative structure learning is to impose an L1 penalty on the
parameters of the model, and to find a Maximum a posteriori
probability (MAP) parameter estimate. The L1 penalty
causes many of the parameters, corresponding to edge fea-
tures, to go to zero, resulting in a sparse graph.

This was originally explored for modeling continuous data
with Gaussian Markov Random Fields (MRFs) in two vari-
ants. In the Markov Blanket (MB) variant, the method learns
a dependency network p(y,ly_,) by fitting d separate regres-
sion problems (independently regressing the label of each of
the d nodes on all other nodes), and [.1-regularization is used
to select a sparse neighbor set. Although one can show this is
a consistent estimator of topology, the resulting model is not
a joint density estimator p(y). In the Random Field (RF)
variant, [.1-regularization is applied to the elements of the
precision matrix to yield sparsity. While the RF variant is
more computationally expensive, it yields both a structure
and a parameterized model (while the MB variant yields only
a structure).

The discrete case is much harder than the Gaussian case,
partially because of the potentially intractable normalizing
constant. Another complicating factor in the discrete case is
that each edge may have multiple parameters. This arises in
multistate models as well as conditional random Fields. For
modeling discrete data, algorithms have been proposed for
the specific case where the data is binary and the edges have
Ising potentials, and in the binary-Ising case, there is a 1:1
correspondence between parameters and edges, and this [.1
approach is suitable. However, in more general scenarios
(including any combination of multi-class MRFs, non-Ising
edge potentials), where many features are associated with
each edge, there exists a need for block-L1 systems and
methods that jointly reduce groups of parameters to zero at
the same time to achieve sparsity. Moreover, prior approaches
do not reveal higher-order dependencies between variables,
such as how the binding activity of one TF can affect the
relationship between two other TFs.

SUMMARY

A method for identifying combinatorial feature interac-
tions, comprising: capturing statistical dependencies between
categorical variables, with the statistical dependencies being
stored in a computer readable storage medium; selecting a
model based on the statistical dependencies using a neighbor-
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hood estimation strategy, the neighborhood estimation strat-
egy further comprising: generating sets of arbitrarily high-
order feature interactions using at least one rule forest; and
optimizing one or more likelihood functions; applying a
damped mean-field approach to the model to obtain param-
eters of a Markov random field (MRF); producing a sparse
high-order semi-restricted MRF by adding a hidden layer to
the MRF; modeling indirect long-range dependencies
between feature groups using the sparse high-order semi-
restricted MRF; and outputting a combinatorial dependency
structure between variables

A system for identifying combinatorial feature interac-
tions, comprising: a statistical dependency module config-
ured to capture statistical dependencies between categorical
variables, with the statistical dependencies being stored in a
computer readable storage medium; a selector configured to
select a model based on the statistical dependencies using a
neighborhood estimation strategy, the neighborhood estima-
tion strategy further comprising: a generator configured to
generate sets of arbitrarily high-order feature interactions
using at least one rule forest; and an optimizer configured to
optimize likelihood functions; an application module config-
ured to apply a damped mean-field approach to the model to
obtain parameters of a Markov random field (MRF); a pro-
duction module configured to produce a sparse high-order
semi-restricted MRF by adding a hidden layer to the MRF; a
modeler configured to model indirect long-range dependen-
cies between feature groups using the sparse high-order semi-
restricted MRF; and an output module configured to output a
combinatorial dependency structure between variables.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a diagram illustratively depicting a method for
identifying combinatorial interactions between TF’s using a
sparse high-order Boltzmann Machine in accordance with an
embodiment of the present principles;

FIG. 2 is a block/flow diagram illustratively depicting a
system for identifying combinatorial interactions between
TF’s using a sparse high-order Boltzmann Machine in accor-
dance with an embodiment of the present principles;

FIG. 3 is a block/flow diagram illustratively depicting a
system/method for generating a conditional dependency
graph using a sparse high-order Markov Random Field
(MRF) in accordance with an embodiment of the present
principles; and

FIG. 4 is a diagram illustratively depicting a high-level
schematic of a Transcription Factor binding complex in
accordance with an embodiment of the present principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

In accordance with the present principles, systems and
methods are provided for a sparse high-order Boltzmann
Machine for identifying combinatorial interactions between
transcription factors (TFs) which enable a general and flex-
ible toolbox for regularization analysis in relatively high
dimensional, discrete multivariate distribution in TF interac-
tions. Studying how the components of complex systems
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work together in influencing biological outcomes is a central
goal in systems biology. A TF is a protein controlling the flow
(or transcription) of genetic information from deoxyribo-
nucleic acid (DNA) to messenger ribonucleic acid (mRNA).
Transcription factors perform their main function (i.e., regu-
lation) by promoting (as an activator), or blocking (as a
repressor) the recruitment of ribonucleic acid (RNA) poly-
merase, which is an enzyme that performs the transcription of
genetic information from DNA to RNA, to specific genes. In
other words, TFs may read and interpret the genetic “blue-
print” of the DNA. They may bind to the DNA and help
initiate a program of increased or decreased gene transcrip-
tion. As such, they are vital for many important cellular pro-
cesses.

TFs may be multi-functional and may regulate genes in a
combinatorial fashion. Many TFs physically interact with
specific partner TFs when binding to genomic DNA. These
combinatorial interactions are critical to understanding TFs,
as they may provide a means by which the cell can integrate
diverse signals, as well as increasing the sensitivity of tran-
scriptional rates to TF concentration. The interactions
between TF bindings may have multiple forms (e.g., direct
protein-protein interactions between TFs to form a TF com-
plex (e.g., FOS/JUN, MYC/MAX), or may occur via inter-
mediate bridging proteins, resulting in a DNA binding com-
plex of multiple TFs (e.g.,, GATA-1/SCL/E47/Ldbl).
Physical interaction between TFs comprises one important
aspect of TF binding, mediating tissue-specific gene expres-
sion. Studying and identifying combinatorial interactions
involving transcription factor (TF) bindings is a critical task
in computational biology. Most relevant genome-wide TF
studies focus on the pairwise co-association analysis (i.e.,
independent analysis of pairs of TFs) which does not reveal
higher-order dependencies, such as how the binding activity
of' one TF can affect the relationship between two other TFs.

In one embodiment according to the present principles,
using TF Chromatin immunoprecipitation sequence (ChIPO-
seq) data sets, a method for identifying how TFs interact
based on statistical dependencies of their binding events in
ChIP-Seq expression measurements. This method advanta-
geously identifies biologically significant TF binding com-
plexes. ChIP followed by high-throughput chip sequencing
(e.g., ChIP-seq) is a powerful and high-resolution method for
finding atargeted genes’ DNA location (loci) of individual TF
proteins, on the genome-wide scale in higher eukaryotes.

In one embodiment, computational analysis is performed
to extract biologically relevant information from a TF’s ChIP-
seq data. The present principles may be employed to discover
high-order interactions between TFs by a high-order Boltz-
mann Machine (hBM) for representing statistical dependen-
cies between CHiP-seq signals. A fully-observed hBM may
be employed to model joint multivariate probability distribu-
tions that capture properties of conditional independence
between variables. Such a model may describe complex sto-
chastic processes, and provide clear methodologies for learn-
ing from (noisy) observations.

In one embodiment, random forest learning may be
employed to generate a plurality of decision trees from ran-
dom samplings of data sets, and the random forest learning
may enable complicated feature interactions to be scalable to
large scale problems. Random forest learning may capture
arbitrary high-order interactions, and max likelihood learning
may be employed to fine tune the weight associated with
high-order interactions in a high order Markov random field
(e.g., Boltzmann machine). In one embodiment, paths of the
plurality of decision trees may be employed to define rules.
L1-regularized regression may be employed to filter the most
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informative and/or most important interactions (i.e., rules) or
terms (i.e., potential functions). The method according to the
present principles may also be applied to data involving tran-
scription factor interactions to predict disease. It is noted that
although transcription factors are illustratively shown accord-
ing to the present principles, it is contemplated that the
present principles are applicable to any data sets for learning
feature interactions (e.g., arbitrary high-order feature inter-
actions). In one embodiment, future interactions of data may
be gleaned, and word interactions for document ranking may
be learned.

Embodiments described herein may be entirely hardware,
entirely software or including both hardware and software
elements. In a preferred embodiment, the present invention is
implemented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

Embodiments may include a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. A com-
puter-usable or computer readable medium may include any
apparatus that stores, communicates, propagates, or trans-
ports the program for use by or in connection with the instruc-
tion execution system, apparatus, or device. The medium can
be magnetic, optical, electronic, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propaga-
tion medium. The medium may include a computer-readable
storage medium such as a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
a rigid magnetic disk and an optical disk, etc.

A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code to reduce the number of
times code is retrieved from bulk storage during execution.
Input/output or I/O devices (including but not limited to key-
boards, displays, pointing devices, etc.) may be coupled to the
system either directly or through intervening I/O controllers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

Referring now to the drawings in which like numerals
represent the same or similar elements and initially to FIG. 1,
a method for identifying combinatorial interactions between
TF’s using a sparse high-order Boltzmann Machine for 100 is
illustratively depicted according to one embodiment of the
present principles. In one embodiment, statistical dependen-
cies are captured between variables (e.g., categorical vari-
ables) using a sparse fully observable high-order Boltzmann
Machine (BM) in block 102. A fully observable high-order
BM may be designed to have sparse higher-order lateral con-
nections between softmax fisible units (i.e., features) to
model feature dependencies.

In one embodiment, a fully-observed Boltzmann Machine
may be an undirected graphical model with just one visible
layer of visible units v and no hidden units. For a fully
observed Boltzmann Machine (BM) with stochastic binary
visible units v, the joint probability distribution of a configu-
ration (v of BM) may be defined based on its energy as
follows:
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_E(w) = Z

i<j

vvj+2bv‘

plv) = —eXP( E(v),

where b are biases, —E(v) is an energy function, p(v) is a
likelihood function, v is a parameter, v is a normalization
factor and includes all v, W is weights (i.e., parameters) to
learn, b is a bias parameter, and Z is a partition function with
7=% exp(-E(u)) It is noted that variables defined herein have
the same meaning throughout unless otherwise indicated.

In one embodiment, a model may be selected in block 104
using a neighborhood estimation strategy under a [.1-based
rule ensemble approach according to the present principles.
Inone embodiment, stochastic dynamics and the learning rule
may accommodate more complicated energy functions. For
example, the quadratic energy function in

—E(v) = Z

i<j

vvj+2bv‘

may be replaced by an energy function whose a typical third-
orderterm like v,v v, w, ;. The change in the learning rule may
be that v,v, may be replaced by v,;v;v,.

In one embodiment, adding a hidden layer of random
binary variables h onto a Boltzmann Machine produces a
restricted Boltzmann Machine (RBM) with stochastic binary
visible units v. There may be symmetric connections between
ahidden layer and a visible layer, and there may be no within-
layer connections. The joint probability distribution of a con-
figuration may be defined based on its energy as follows:

E(v, b)=—

i is visible

by — Z bjhj—zv;hjw;j,

J is hidden i

where E(v,h) is an energy function, v is visible, h is hidden,
and b,, v, h,, and w, are parameters in an RBM.

In one embodiment, when each feature variable of discrete
categorical data has an arbitrary order of possible values
(assuming totally K possible values), the model Using K
softmax binary units to represent each discrete feature with K
possible values. Thus the energy function of c-order hBM for
discrete data may be represented as

whik -
ey

ke ky Kk
fektolg

e,

c

LRIV IDIDIEPIL

non e ki Kk

where K softmax binary visible units may be employed to
represent each discrete feature variable taking & values from 1
to K. The notation v;*=1 means the discrete value of the i-th
feature is k. W,/ descnbes the connection Welght between
observed Varlable i taking value k and feature 1' taking value
k"). In one embodiment, if there exist n discrete features and K
possible discrete values for each feature, there may be

n(n - DK?
2

lateral (pairwise) connection weights.
In one embodiment, given a training set of state vectors
(i.e., the data), learning may consist of finding weights and
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biases (i.e., the parameters) that make those state vectors
good. More specifically, weights and biases may be found that
define a Boltzmann distribution in which the training vectors
have high probability, which means to optimize

pv) = l6XP( E(v)).

In one embodiment, in practice for c-th order hBM, it is not
always necessary to include a potential for all ¢® subsets.
Model selection for hBM could be performed by solving the
following optimization problem by using the sparsity regu-
larization on weight parameter W,

L1
min Zexp(~E£(v) + A- W]

Also, calculating the log-likelihood p(v) and its gradient are
intractable (due to the logarithm of the normalizing constant
and its gradient). The pseudo-likelihood could be used to
optimize the (regularized) product of the conditional distri-
butions,

n

»
min > logp( |

=1 j=1

Q)
Va4,

W)+ 41wl

In one embodiment, the above L1-penalized pseudo-likeli-

hood functions may be optimized through two steps, (1) the

whole structure learning and (2) parameter learning/fitting.
For example, in one embodiment, the conditional distribu-

tion of v, given the other variables V_={v,, v5, . . ., V;_))
Vgelys - - -5 ¥,y may take the form of
pj=k|Vj={l, ... ,K}D w)=
. kc k
exp(z ZZ Z 2 kel J,g]

ie (Z ZZ Zﬁjkrg vl ...ufg]

=1 ” e

In one embodiment, v, may be viewed as the response variable
y in a logistic regression (e.g., multinomial) where the indi-
cator functions associated with the other variables may play
the role of the covariates x. This “neighborhood estimation”
strategy handles per-node optimization taking the form of

min Y Ly®, ATxD) + A8,
3 Z W, B Bl

i=1

Here, x may be a vector including all (c-1)-th order interac-
tion factors from V_; and [ may represent the logistic loss
function, T is a number of iterations, and  is a set of param-
eters.

In one embodiment, the per-node optimization may
employ rule forests to obtain a rich set of candidate interac-
tion factors in block 106. Rules may be conjunctions of basic
propositions concerning the values taken by the input fea-
tures. From the perspectives of interpretability as well as
generalization, it is highly desirable to construct rule
ensembles with low training error, and having rules that may
be simple (i.e., involve few conjunctions), and may be few in
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number. In one embodiment, the (exponentially) large feature
space of all possible conjunctions may be represented opti-
mally and efficiently as general regression and classification
models, and may be constructed as linear combinations of
simple rules derived from the data. Each rule may consist of
a conjunction of a small number of simple statements con-
cerning the values of individual input variables.

In one embodiment, rule ensembles may produce a higher
predictive accuracy comparable to conventional methods.
However, their principal advantage may lie in interpretation.
Because of its simple form, each rule is easy to understand,
and its influence on individual predictions, selected subsets of
predictions, or globally over the entire space of joint input
variable values is also simple to understand. Similarly, the
degree of relevance of the respective input variables may be
assessed globally, locally in different regions of the input
space, or at individual prediction points. In one embodiment,
those variables that are involved in interactions with other
variables, the strength and degree of those interactions, as
well as the identities of the other variables with which they
interact may be automatically identified according to the
present principles. Graphical representations may be
employed to visualize both main and interaction effects.

In one embodiment, the combinatorial optimization of the
per-node optimization is achieved by performing a factor
filter step by growing an ensemble of decision trees through
multiple randomly generated subsample using a perturbation
sampling technique. Each node (e.g., interior, terminal) of
each tree may produce a collection of factors which may be
used in subsequent steps of the present method. In one
embodiment, an ensemble of decision trees may be viewed as
a filter which defines a collection of high-order factors and
may exploit existing fast algorithms for producing decision
tree ensembles. The factor corresponding to any node in a tree
may be given by the product ofthe items associated with all of
the edges on a path from a root to a particular node.

In embodiment, to optimize the regularized pseudo-likeli-
hood, multiple (i.e., multinomial) logistic regression prob-
lems may not be independent (e.g., multiple parameters may
be shared across multiple problems). Each problem may be
handled separately, and as such, the method may function as
structured learning, and parameter estimation may be
achieved using damped mean-field updates to re-estimate the
parameters W by employing the below method:

p(Vj=k|V,j={1,

(S - F 5

ek

SeefS - 13 - v

=1 m e

KN wy =

kk2.
pry -

k k
Seki2 J,g]

whe -
iy e

etz L. UI;CC]
rO(JJ‘-) = softmax((ij)TV,j, k)
Fk) =

J

+ )L

FK

)+ (-0 xsoftma{(Wf )V

e ) ]

r=1,... ,T,0<A<1,

where

_explze)

e
> exp(a)

=

softmax(z, k) =
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T is the maximum number of iterations of mean-field updates,
and a data vector v may be employed for initialization.

In one embodiment, I.1-penalized pseudo-likelihood func-
tions may be optimized in block 108, and may execute the
whole structure and parameter learning in two consecutive
steps. In another embodiment, the method may include add-
ing a hidden layer to obtain a sparse high-order semi-Re-
stricted Boltzmann Machine (SRBM) in block 112. The
SRBM may include sparse strong higher-order lateral con-
nections between softmax visible units (i.e., features), and
may model observed feature dependencies and employ hid-
den units to model indirect long-range dependencies between
feature groups in block 114. It should be noted that although
the above configurations are illustratively depicted according
to the present principles, it is contemplated that other sorts of
configurations may also be employed according to the present
principles.

Referring now to FIG. 2, a system for identifying combi-
natorial interactions between TF’s using a sparse high-order
Boltzmann Machine 200 is illustratively depicted according
to one embodiment of the present principles. The system 201
preferably includes one or more processors 212 and memory
205 for storing applications, modules and other data. System
201 may include one or more displays 210 for viewing. The
displays 210 may permit a user to interact with the system 201
and its components and functions. This may be further facili-
tated by a user interface 214, which may include a mouse,
joystick, or any other peripheral or control to permit user
interaction with the system 201 and/or its devices. It should be
understood that the components and functions of the system
201 may be integrated into one or more systems or worksta-
tions.

System 201 may receive input data 203, which may be
employed as input to a plurality of modules, including a
dependency determination module 202, a model selection
module, a rule forest generation module, a rule fitting module,
and an optimization module. System 201 may produce output
data 204, which in one embodiment may be displayed on a
display device 210. It should be noted that while the above
configuration is illustratively depicted, it is contemplated that
other sorts of configurations may also be employed according
to the present principles.

Referring now to FIG. 3, a block/flow diagram illustra-
tively depicting a system/method for generating a conditional
dependency graph using a sparse high-order Markov Random
Field (MRF) 300 is shown in accordance with an embodiment
of the present principles. In one embodiment, a multivariate
categorical vector (e.g., ChIP-seq signals for TF, protein
expression signal of microarray) may be input in block 302. A
sparse high-order MRF may be generated in block 310 by
generating a rule forest in block 304, performing L1 sparsity
penalized rule fitting in block 306, and executing mean field
parameterization or pseudo-likelihood optimization in block
308. A conditional dependency graph may be output in 312. It
should be noted that while the above configuration is illustra-
tively depicted, it is contemplated that other sorts of configu-
rations may also be employed according to the present prin-
ciples.

Referring now to FIG. 4, a diagram illustratively depicting
a high-level schematic of a Transcription Factor binding com-
plex (TFBC) 400 is shown in accordance with an embodiment
of'the present principles. In one embodiment, Chromatin may
be input into the system in block 402. A TFBC is illustratively
shown in block 404 which may identify complex interactions
between TFs. A coactivator complex may bridge an activator
and other components necessary for transcription in block
406. An initiation complex 410 begins the initiation process,
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and transcription initiation may be achieved in block 412, and
is related to interaction between TFs. While the above con-
figuration is illustratively depicted according to the present
principles, it is contemplated that other sorts of configurations
may also be employed in accordance with the present prin-
ciples.

It should be recognized that the present principles are not
limited to the particular embodiments described above.
Rather, numerous other embodiments of the sparse high-
order Boltzmann Machine for identifying combinatorial
interactions between TFs may also be employed in accor-
dance with the present principles.

Having described preferred embodiments of a system and
method for sparse high-order Boltzmann Machine for iden-
tifying combinatorial interactions between TFs (which are
intended to be illustrative and not limiting), it is noted that
modifications and variations can be made by persons skilled
in the art in light of the above teachings. It is therefore to be
understood that changes may be made in the particular
embodiments disclosed which are within the scope of the
invention as outlined by the appended claims. Having thus
described aspects of the invention, with the details and par-
ticularity required by the patent laws, what is claimed and
desired protected by Letters Patent is set forth in the appended
claims.

What is claimed is:

1. A method for identifying combinatorial feature interac-
tions, comprising:

capturing statistical dependencies between categorical

variables, with the statistical dependencies being stored
in a computer readable storage medium;
selecting a model based on the statistical dependencies
using a neighborhood estimation strategy, the neighbor-
hood estimation strategy further comprising:
generating sets of arbitrarily high-order feature interac-
tions using at least one rule forest; and

optimizing one or more likelihood functions;

applying a damped mean-field approach to the model to
obtain parameters of a Markov random field (MRF),
wherein the MRF is a Boltzmann machine;

producing a sparse high-order semi-restricted MRF by

adding a hidden layer to the MRF;
modeling indirect long-range dependencies between fea-
ture groups using the sparse high-order semi-restricted
MREF; and

outputting a combinatorial dependency structure between
variables, wherein the combinatorial feature interac-
tions are identified between transcription factors (TF).

2. The method as recited in claim 1, wherein the selecting
a model using a neighborhood estimation strategy includes
employing an [.1-based rule ensemble approach on any of a
given transcription factor (TF).

3. The method as recited in claim 1, wherein L1-sparsity
penalized rule fitting is employed during the generating sets
of arbitrarily high-order feature interactions to achieve opti-
mal parameterization.

4. The method as recited in claim 1, wherein the combina-
torial dependency structure includes combinatorial interac-
tions involving TF bindings in cellular systems.

5. The method as recited in claim 1, wherein the modeling
includes modeling observed feature dependencies.
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6. The method as recited in claim 1, wherein a weight
associated with the arbitrarily high-order feature interactions
in a final sparse high-order MRF is fine-tuned using maxi-
mum likelihood learning.

7. The method as recited in claim 1, wherein hidden units
are employed during modeling to model the indirect long-
range dependencies between feature groups.

8. The method as recited in claim 1, wherein the one or
more likelihood functions are [.1-penalized pseudo-likeli-
hood functions.

9. A system for identifying combinatorial feature interac-
tions, comprising:

a statistical dependency module configured to capture sta-
tistical dependencies between categorical variables,
with the statistical dependencies being stored in a non-
transitory computer readable storage medium;

a selector configured to select a model based on the statis-
tical dependencies using a neighborhood estimation
strategy, the neighborhood estimation strategy further
comprising:

a generator configured to generate sets of arbitrarily
high-order feature interactions using at least one rule
forest; and

an optimizer configured to optimize likelihood func-
tions;

anapplication module configured to apply a damped mean-
field approach to the model to obtain parameters of a
Markov random field (MRF), wherein the MRF is a
Boltzmann machine;

a production module configured to produce a sparse high-
order semi-restricted MRF by adding a hidden layer to
the MRF;

a modeler configured to model, using a hardware proces-
sor, indirect long-range dependencies between feature
groups using the sparse high-order semi-restricted
MREF; and

an output module configured to output a combinatorial
dependency structure between variables, wherein the
combinatorial feature interactions are identified
between transcription factors (TF).

10. The system as recited in claim 9, wherein the selecting

a model using a neighborhood estimation strategy includes
employing an [.1-based rule ensemble approach on any of a
given transcription factor (TF).

11. The system as recited in claim 9, wherein L1-sparsity
penalized rule fitting is employed during the generating sets
of arbitrarily high-order feature interactions to achieve opti-
mal parameterization.

12. The system as recited in claim 9, wherein the combi-
natorial dependency structure includes combinatorial inter-
actions involving TF bindings in cellular systems.

13. The system as recited in claim 9, wherein the modeler
is configured to model observed feature dependencies.

14. The system as recited in claim 9, wherein a weight
associated with the arbitrarily high-order feature interactions
in a final sparse high-order MRF is fine-tuned using maxi-
mum likelihood learning.

15. The system as recited in claim 9, wherein hidden units
are employed during modeling to model the indirect long-
range dependencies between feature groups.

16. The system as recited in claim 9, wherein the one or
more likelihood functions are [.1-penalized pseudo-likeli-
hood functions.



